Noções de Conjuntos

1  A teoria avançada dos conjuntos foi desenvolvida por volta do ano 1872 pelo matemático alemão Georg Cantor (1845 / 1918) e aperfeiçoada no início do século XX por outros matemáticos, entre eles, Ernst Zermelo (alemão - 1871/1956), Adolf Fraenkel (alemão - 1891/ 1965), Kurt Gödel (austríaco - 1906 /1978), Janos von Newman (húngaro - 1903 /1957), entre outros.

O que se estuda deste assunto ao nível do segundo grau e exigido em alguns vestibulares, é tão somente uma introdução elementar à teoria dos conjuntos, base para o desenvolvimento de temas futuros, a exemplo de relações, funções, análise combinatória, probabilidades, etc

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição.

Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12, ... }.
 
Esta forma de representar um conjunto, pela enumeração dos seus elementos, chama-se forma de listagem. O mesmo conjunto também poderia ser representado por uma propriedade dos seus elementos ou seja, sendo x um elemento qualquer do conjunto P acima, poderíamos escrever:
P = { x | x é par e positivo } = { 2,4,6, ... }.

2.1 - Relação de pertinência:
 
Sendo x um elemento do conjunto A , escrevemos x
Î A,
onde o símbolo
Î significa "pertence a". 
Sendo y um elemento que não pertence ao conjunto A , indicamos esse fato com a notação 
y
Ï A.

O conjunto que não possui elementos , é denominado conjunto vazio e representado pela letra grega fi:
f .
Com o mesmo raciocínio, e opostamente ao conjunto vazio, define-se o conjunto ao qual pertencem todos os elementos, denominado conjunto universo, representado pelo símbolo U.
Assim é que, pode-se escrever como exemplos:
Æ = { x; x ¹ x} e U = {x; x = x}.

2.2 - Subconjunto
 
Se todo elemento de um conjunto A também pertence a um conjunto B, então dizemos que
A é subconjunto de B e indicamos isto por A
Ì B.

Notas:
a) todo conjunto é subconjunto de si próprio. ( A
Ì A )
b) o conjunto vazio é subconjunto de qualquer conjunto. (
Æ Ì A)
c) se um conjunto A possui m elementos então ele possui 2m subconjuntos.
d) o conjunto formado por todos os subconjuntos de um conjunto A é denominado 
conjunto das partes de A e é indicado por P(A)
Assim, se A = {c, d} , o conjunto das partes de A é dado por   P(A) = {
f , {c}, {d}, {c,d}}
e) um subconjunto de A é também denominado parte de A.

3 - Conjuntos numéricos fundamentais

Entendemos por conjunto numérico, qualquer conjunto cujos elementos são números. Existem infinitos conjuntos numéricos, entre os quais, os chamados conjuntos numéricos fundamentais, a saber:

3.1 - Conjunto dos números naturais
 

N = {0,1,2,3,4,5,6,... }

3.2 - Conjunto dos números inteiros

Z = {..., -4,-3,-2,-1,0,1,2,3,... }
Nota: é evidente que N
Ì Z.

3.3 - Conjunto dos números racionais

Q = {x | x = p/q com p
Î Z , q Î Z e q ¹ 0 }. (o símbolo | lê-se como "tal que").
Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero. 
Lembre-se que não existe divisão por zero!.
São exemplos de números racionais: 2/3,  -3/7,   0,001=1/1000,   0,75=3/4,   0,333... = 1/3, 
7 = 7/1, etc.

Notas:

a) é evidente que N
Ì Z Ì Q.
b) toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração.
Exemplo: 0,4444... = 4/9

3.4 - Conjunto dos números irracionais

Q'
= {x | x é uma dízima não periódica}. (o símbolo | lê-se como "tal que").
Exemplos de números irracionais: 
p = 3,1415926...  (número pi = razão entre o comprimento de qualquer circunferência e o seu diâmetro) 
2,01001000100001... (dízima não periódica)
Ö 3 = 1,732050807... (raiz não exata).

3.5 - Conjunto dos números reais

R = { x | x é racional ou x é irracional }.

Notas:
a) é óbvio que N
Ì Z Ì Q Ì R
b) Q'
Ì R
c) um número real é racional ou irracional; não existe outra hipótese!

4
- Intervalos numéricos

Dados dois números reais p e q, chama-se intervalo a todo conjunto de todos números reais compreendidos entre p e q , podendo inclusive incluir p e q. Os números p e q são os limites do 
intervalo, sendo a diferença p - q , chamada amplitude do intervalo. 
Se o intervalo incluir p e q , o intervalo é fechado e caso contrário, o intervalo é dito aberto. 
A tabela abaixo, define os diversos tipos de intervalos.

TIPOS REPRESENTAÇÃO OBSERVAÇÃO
INTERVALO FECHADO [p;q] = {x Î R; p £ x £ q} inclui os limites p e q
INTERVALO ABERTO (p;q) = { x Î R; p < x < q} exclui os limites p e q
INTERVALO FECHADO A ESQUERDA [p;q) = { x Î R; p £ x < q} inclui p e exclui q
INTERVALO FECHADO À DIREITA (p;q] = {x Î R; p < x £ q} exclui p e inclui q
INTERVALO SEMI-FECHADO [p;¥ ) = {x Î R; x ³ p} valores maiores ou iguais a p.
INTERVALO SEMI-FECHADO (- ¥ ; q] = { x Î R; x £ q} valores menores ou iguais a q.
INTERVALO SEMI-ABERTO (-¥ ; q) = { x Î R; x < q} valores menores do que q.
INTERVALO SEMI-ABERTO (p; ¥ ) = { x > p } valores maiores do que p.

Nota: é fácil observar que o conjunto dos números reais, (o conjunto R) pode ser representado na forma de intervalo como R = ( -¥ ; + ¥ ).

5 - Operações com conjuntos

5.1 - União ( È )

Dados os conjuntos A e B , define-se o conjunto união A È B = { x; x Î A ou x Î B}.
Exemplo: {0,1,3}
È { 3,4,5 } = { 0,1,3,4,5}. Percebe-se facilmente que o conjunto união contempla todos os elementos do conjunto A ou do conjunto B.

Propriedades imediatas:
a) A
È A = A
b) A
È f = A
c) A
È B = B È A (a união de conjuntos é uma operação comutativa)
d) A
È U = U , onde U é o conjunto universo.

5.2 - Interseção ( Ç )

Dados os conjuntos A e B , define-se o conjunto interseção A Ç B = {x; x Î A e x Î B}.
Exemplo: {0,2,4,5}
Ç { 4,6,7} = {4}. Percebe-se facilmente que o conjunto interseção contempla os elementos que são comuns aos conjuntos A e B.

Propriedades imediatas:
a) A
Ç A = A
b) A
Ç Æ = Æ
c) A
Ç B = B Ç A ( a interseção é uma operação comutativa)
d) A
Ç U = A onde U é o conjunto universo.

São importantes também as seguintes propriedades :
P1. A
Ç ( B È C ) = (A Ç B) È ( A Ç C) (propriedade distributiva)
P2. A
È ( B Ç C ) = (A È B ) Ç ( A È C) (propriedade distributiva)
P3. A
Ç (A È B) = A (lei da absorção)
P4. A
È (A Ç B) = A (lei da absorção)
Observação: Se A
Ç B = f , então dizemos que os conjuntos A e B são Disjuntos.

5.3 - Diferença A - B = {x ; x Î A e x Ï B}. 
Observe que os elementos da diferença são aqueles que pertencem ao primeiro conjunto, mas não pertencem ao segundo.
Exemplos: 
{ 0,5,7} - {0,7,3} = {5}.
{1,2,3,4,5} - {1,2,3} = {4,5}.

Propriedades imediatas:
a) A -
f = A
b)
f - A = f
c) A - A =
Æ
d) A - B
¹ B - A ( a diferença de conjuntos não é uma operação comutativa).

5.3.1 - Complementar de um conjunto
Trata-se de um caso particular da diferença entre dois conjuntos. Assim é , que dados dois conjuntos A e B, com a condição de que B
Ì A , a diferença A - B chama-se, neste caso, complementar de B em relação a A .
Simbologia: CAB = A - B.
Caso particular: O complementar de B em relação ao conjunto universo U, ou seja , U - B ,é indicado pelo símbolo B' .Observe que o conjunto B' é formado por todos os elementos que não pertencem ao conjunto B, ou seja:

B' = {x; x Ï B}. É óbvio, então, que:

a) B Ç B' = f
b) B È B' = U
c)
f' = U
d) U' =
f

6 - Partição de um conjunto
Seja A um conjunto não vazio. Define-se como partição de A, e representa-se por part(A), qualquer subconjunto do conjunto das partes de A (representado simbolicamente por  P(A)),  que satisfaz simultaneamente, às seguintes condições:
1 - nenhuma dos elementos de part(A)  é o conjunto vazio.
2 - a interseção de  quaisquer dois elementos de
part(A) é o conjunto vazio.
3 - a união de todos os elementos de
part(A) é igual ao conjunto A.

Exemplo: Seja A = {2, 3, 5}
Os subconjuntos de A serão: {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, e o conjunto vazio - Ø.
Assim, o conjunto das partes de A será:
P(A) = { {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, Ø }
Vamos tomar, por exemplo, o seguinte subconjunto de P(A):
X = { {2}, {3,5} }
Observe que X é uma partição de A - cuja simbologia é part(A) - pois:
a) nenhum dos elementos de X é Ø .
b) {2} 
Ç {3, 5}  = Ø
c)
{2} U  {3, 5} = {2, 3, 5} = A
Sendo observadas as condições 1, 2 e 3 acima, o conjunto X é uma partição do conjunto A.
Observe que Y = { {2,5}, {3} } ; W = { {5}, {2}, {3} }; S = { {3,2}, {5} } são outros exemplos de partições do conjunto A.

Outro exemplo: o conjunto Y = { {0, 2, 4, 6, 8, ...}, {1, 3, 5, 7, ...} } é uma partição do conjunto Z dos números inteiros, pois {0, 2, 4, 6, 8, ...}
Ç {1, 3, 5, 7, ...} = Ø  e  {0, 2, 4, 6, 8, ...} U {1, 3, 5, 7, ...} =

7
- Número de elementos da união de dois conjuntos

Sejam A e B dois conjuntos, tais que o número de elementos de A  seja n(A) e o número de elementos de B  seja n(B).
Nota: o número de elementos de um conjunto, é também conhecido com cardinal do conjunto.

Representando o número de elementos da interseção A
Ç B por n(A Ç B) e o número de elementos da união A È B por n(A È B) , podemos escrever a seguinte fórmula:
n(A
È B) = n(A) + n(B) - n(A Ç B)

8 - Exercícios resolvidos:

1) USP-SP - Depois de n dias de férias, um estudante observa que:
a) choveu 7 vezes, de manhã ou à tarde;
b) quando chove de manhã não chove à tarde;
c) houve 5 tardes sem chuva;
d) houve 6 manhãs sem chuva.
Podemos afirmar então que n é igual a:
a)7
b)8
*c)9
d)10
e)11
Veja a solução
AQUI

2) 52 pessoas discutem a preferência por dois produtos A e B, entre outros e conclui-se que o número de pessoas que gostavam de B era:
I - O quádruplo do número de pessoas que gostavam de A e B;
II - O dobro do número de pessoas que gostavam de A;
III - A metade do número de pessoas que não gostavam de A nem de B.
Nestas condições, o número de pessoas que não gostavam dos dois produtos é igual a:
*a)48
b)35
c)36
d)47
e)37
Para ver a solução clique
AQUI

3) UFBA - 35 estudantes estrangeiros vieram ao Brasil. 16 visitaram Manaus; 16, S. Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e , desses 5, 3 visitaram também São Paulo. O número de estudantes que visitaram Manaus ou São Paulo foi:
*a) 29
b) 24
c) 11
d) 8
e) 5
Clique
AQUI para ver a solução.

4) FEI/SP - Um teste de literatura, com 5 alternativas em que uma única é verdadeira, referindo-se à data de nascimento de um famoso escritor, apresenta as seguintes alternativas:
a)século XIX
b)século XX
c)antes de 1860
d)depois de 1830
e)nenhuma das anteriores

Pode-se garantir que a resposta correta é:
a)a
b)b
*c)c
d)d
e)e
Clique
AQUI para ver a solução.

9 - Exercícios propostos

1 - Se um conjunto A possui 1024 subconjuntos, então o cardinal de A é igual a:
a) 5
b) 6
c) 7
d) 9
*e)10

2 - Após um jantar, foram servidas as sobremesas X e Y. Sabe-se que das 10 pessoas presentes, 5 comeram a sobremesa X,  7 comeram a sobremesa Y  e  3 comeram as duas. Quantas não comeram nenhuma ?
*a) 1
b) 2
c) 3
d) 4
e) 0

3) PUC-SP - Se A = Æ e B = {Æ }, então:
*a) A
Î B
b) A
È B = Æ
c) A = B
d) A
Ç B = B
e) B
Ì A

4) FGV-SP - Sejam A, B e C conjuntos finitos. O número de elementos de A Ç B é 30, o número de elementos de A Ç C é 20 e o número de elementos de A Ç B Ç C é 15. 
Então o número de elementos de A
Ç (B È C) é igual a:
*a)35
b)15
c)50
d)45
e)20

5) Sendo a e b números reais quaisquer, os números possíveis de elementos do conjunto
A = {a, b, {a}, {b}, {a,b} } são:
*a)2 ou 5
b)3 ou 6
c)1 ou 5
d)2 ou 6
e)4 ou 5

Paulo Marques,  Feira de Santana - BA.

VOLTAR
CONTINUAR