Medalha de bronze
Usando
dois tipos de bronze, um com 62% e outro com 70% de cobre,
pretende-se obter uma tonelada de um novo tipo de bronze com
exatamente 65% de cobre. Para isso deve-se usar:
a) 700 kg do
primeiro e 300 kg do segundo
b) 725 kg do primeiro e 275 kg do
segundo
c) 650 kg do primeiro e 350 kg do segundo
d) 625 kg
do primeiro e 375 kg do segundo
e) 800 kg do primeiro e 200 kg do
segundo
Solução:
Notas:
1) kg símbolo
da unidade de massa quilograma, equivalente a 1000 gramas (1 kg =
1000 g)
2) tonelada múltiplo do kg , equivalente a
1000 kg (1 ton = 1000 kg)
3) bronze liga composta
normalmente por cobre, estanho e zinco.
Sejam B1 e B2 os tipos de bronze dados no problema.
Já sabemos de
porcentagem
que x % = x / 100, ou seja, x % representa x partes tomadas em 100
partes. Para simplificar, consideremos a quantidade de 100 kg do
bronze B1 e 100 kg do bronze B2. Pelo enunciado, teremos:
B1: 100
kg ........................62 % de 100 kg = 62 kg de cobre
B2: 100
kg ........................70 % de 100 kg = 70 kg de cobre
Desejamos obter a
partir de B1 e B2, um outro tipo de bronze B3 com 65 % de cobre, ou
seja:
B3: 100 kg ...................... 65 % de 100 kg = 65 kg de
cobre
Para sito, vamos usar x % do bronze B1 e y % do bronze
B2, onde x % + y % = 100%.
Então, para 100 kg do bronze B3,
deveremos ter a seguinte composição:
x % de 62 kg +
y % de 70 kg = 65 kg
Como x % + y % = 100 %, podemos escrever:
y % = 100 % - x % = 1 x%,
já que 100% = 100/100 =
1.
Logo,
x % de 62 + (1
x %) de 70 = 65
Ora, sabemos que x % de uma quantidade qualquer M
é igual a x %.M = (x / 100).M = xM / 100.
Teremos
então:
x %.62 + (1 x %).70 = 65
x %.62 + 70 x
%.70 = 65
Colocando x % em evidencia e passando 70 para o segundo
membro, vem:
x %(62 70) = 65 70
Lembrando que x % = x / 100, fica:
(x / 100)(-8) = -5
x / 100 = (-5) / (-8)
x / 100 = 0,625 \
x = 100.0,625 = 62,5
Então, x = 62,5 o que eqüivale a
x % = 62,5 %
Como já vimos
acima que x % + y % = 100 %, é claro que y % = 100 % - x % =
= 100 % - 62,5 % = 37,5 %. Este resultado significa que para
compor o bronze do tipo B3 , deveremos tomar 62,5 % do bronze tipo B1
e 37,5 % do bronze tipo B2.
Assim, para obter os 1000 kg = 1
tonelada do bronze B3 serão necessários:
62,5% . 1000 = 0,625.1000 = 625 kg do bronze tipo B1 e,
37,5% . 1000 = 0,375 . 1000 = 375 kg do bronze tipo B2, o que nos leva à alternativa D.
Agora
resolva este:
Usando dois tipos de
bronze, um com 70 % e outro com 60 % de cobre, pretende-se obter uma
tonelada de um novo tipo de bronze com exatamente 68 % de cobre. Para
isso deve-se usar:
a) 700 kg do primeiro e 300 kg do segundo
b) 725 kg do primeiro e 275 kg do segundo
c) 650 kg do
primeiro e 350 kg do segundo
d) 625 kg do primeiro e 375 kg do
segundo
e) 800 kg do primeiro e 200 kg do segundo
Resposta: E
Nota:
Nesta 28ª Olimpíada em andamento neste mês de agosto na
Grécia, o Brasil só conseguiu até a presente
data, duas medalhas de bronze, ambas no Judô.
Paulo
Marques Feira de Santana BA,
21de agosto de 2004
VOLTAR